WASH complex subunit 2C - Q9Y4E1 (WAC2C_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission (PubMed:19922874, PubMed:20498093, PubMed:22513087, PubMed:23331060). Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35 (PubMed:24980502). Required for the endosomal recruitment of CCC complex subunits COMMD1, CCDC93 AND C16orf62 (PubMed:25355947). Plays a role in fluid-phase endocytosis, a process exploited by vaccinia intracellular mature virus (IMV) to enter cells. As a result, may facilitate the penetration of IMV into cells (PubMed:18550675). UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Component of the WASH core complex also described as WASH regulatory complex (SHRC) composed of WASH (WASHC1, WASH2P or WASH3P), WASHC2 (WASHC2A or WASHC2C), WASHC3, WASHC4 and WASHC5; in the complex interacts (via N-terminus) directly with WASHC1. The WASH core complex associates via WASHC2 with the F-actin-capping protein dimer (formed by CAPZA1, CAPZA2 or CAPZA3 and CAPZB) in a transient or substoichiometric manner which was initially described as WASH complex (PubMed:19922875, PubMed:20498093). Interacts with VPS35; mediates the association with the retromer CSC complex. Interacts with FKBP15. Interacts with CCDC93, CCDC22, C16orf62; indicative for an association of the WASH core complex with the CCC complex. May directly interact with TBC1D23. UniProt
The LFa (leucine-phenylalanine-acidic) motif bind directly to VPS35 of retromer CSC; adjacent motifs can act cooperatively to bind multiple CSCs, although there is significant variability in the affinities of different motifs for retromer. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.