DNA-directed RNA polymerase II subunit RPB1 - P08775 (RPB1_MOUSE)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

 
Function
DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates (By similarity). Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing (By similarity). Regulation of gene expression levels depends on the balance between methylation and acetylation levels of tha CTD-lysines (PubMed:26687004). Initiation or early elongation steps of transcription of growth-factors-induced immediate early genes are regulated by the acetylation status of the CTD (PubMed:24207025). Methylation and dimethylation have a repressive effect on target genes expression (PubMed:26687004). UniProt
Catalytic Activity
a ribonucleoside 5'-triphosphate + RNAn = diphosphate + RNAn+1 UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Component of the RNA polymerase II (Pol II) complex consisting of 12 subunits. Component of a complex which is at least composed of HTATSF1/Tat-SF1, the P-TEFb complex components CDK9 and CCNT1, RNA polymerase II, SUPT5H, and NCL/nucleolin. The large PER complex involved in the repression of transcriptional termination is composed of at least PER2, CDK9, DDX5, DHX9, NCBP1 and POLR2A (active). Interacts (via the C-terminal domain (CTD)) with U2AF2; recruits PRPF19 and the Prp19 complex to the pre-mRNA and may couple transcription to pre-mRNA splicing. Interacts (via the C-terminal domain (CTD)) with SMN1/SMN2; recruits SMN1/SMN2 to RNA Pol II elongation complexes. Interacts via the phosphorylated C-terminal domain with WDR82 and with SETD1A and SETD1B only in the presence of WDR82. When phosphorylated at 'Ser-5', interacts with MEN1; the unphosphorylated form, or phosphorylated at 'Ser-2' does not interact. When phosphorylated at 'Ser-2', interacts with SUPT6H (via SH2 domain). Interacts with RECQL5 and TCEA1; binding of RECQL5 prevents TCEA1 binding. The phosphorylated C-terminal domain interacts with FNBP3 and SYNCRIP. Interacts with ATF7IP. Interacts with DDX5. Interacts with WWP2. Interacts with SETX. Interacts (phosphorylated) with PIH1D1. Interacts (via the C-terminal domain (CTD)) with TDRD3. Interacts with PRMT5. Interacts with XRN2. Interacts with SAFB/SAFB1. Interacts with CCNL1. Interacts with CCNL2, MYO1C, PAF1 and SFRS19. Interacts (via C-terminus) with CMTR1, CTDSP1 and SCAF8. Interacts (via the C-terminal domain (CTD)) with CCNT2 (By similarity). Interacts with FUS (By similarity). Interacts with MCM3AP (By similarity). Interacts with kinase SRPK2; the interaction occurs during the co-transcriptional formation of inappropriate R-loops (By similarity). UniProt
Domain
The C-terminal domain (CTD) serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.