Eukaryotic translation initiation factor 2 subunit gamma - P32481 (IF2G_YEAST)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

As a subunit of eukaryotic initiation factor 2 (eIF-2), involved in the early steps of protein synthesis. In the presence of GTP, eIF-2 forms a ternary complex with initiator tRNA Met-tRNAi and then recruits the 40S ribosomal complex and initiation factors eIF-1, eIF-1A and eIF-3 to form the 43S pre-initiation complex (43S PIC), a step that determines the rate of protein translation. The 43S PIC binds to mRNA and scans downstream to the initiation codon, where it forms a 48S initiation complex by codon-anticodon base pairing. This leads to the displacement of eIF-1 to allow GTPase-activating protein (GAP) eIF-5-mediated hydrolysis of eIF2-bound GTP. Hydrolysis of GTP and release of Pi, which makes GTP hydrolysis irreversible, causes the release of the eIF-2-GDP binary complex from the 40S subunit, an event that is essential for the subsequent joining of the 60S ribosomal subunit to form an elongation-competent 80S ribosome. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF-2 must be exchanged with GTP by way of a reaction catalyzed by GDP-GTP exchange factor (GEF) eIF-2B. UniProt
Catalytic Activity
GTP + H2O = GDP + H+ + phosphate UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Eukaryotic translation initiation factor 2 (eIF-2) is a heterotrimeric G-protein composed of an alpha, a beta and a gamma subunit. The factors eIF-1, eIF-1A, eIF-2, eIF-3, TIF5/eIF-5 and methionyl-tRNAi form a multifactor complex (MFC) that may bind to the 40S ribosome. UniProt
  • Organism: Baker's yeast
  • Length:
  • UniProt
  • Other Gene names: GCD11, TIF213, YER025W
This protein in other organisms (by gene name):
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.