TRAF-interacting protein with FHA domain-containing protein A - Q96CG3 (TIFA_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Adapter molecule that plays a key role in the activation of proinflammatory NF-kappa-B signaling following detection of bacterial pathogen-associated molecular pattern metabolites (PAMPs) (PubMed:12566447, PubMed:15492226, PubMed:26068852, PubMed:28877472, PubMed:28222186, PubMed:30111836). Promotes activation of an innate immune response by inducing the oligomerization and polyubiquitination of TRAF6, which leads to the activation of TAK1 and IKK through a proteasome-independent mechanism (PubMed:15492226, PubMed:26068852). TIFA-dependent innate immune response is triggered by ADP-D-glycero-beta-D-manno-heptose (ADP-Heptose), a potent PAMP present in all Gram-negative and some Gram-positive bacteria: ADP-Heptose is recognized by ALPK1, which phosphorylates TIFA at Thr-9, leading to TIFA homooligomerization and subsequent activation of proinflammatory NF-kappa-B signaling (PubMed:30111836). UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Homooligomer; homooligomerizes following phosphorylation at Thr-9 (PubMed:12566447, PubMed:22566686, PubMed:26068852, PubMed:26389808). Interacts with IRAK1, TRAF2 and TRAF6 (PubMed:12566447). Interacts with TIFAB; binding to TIFAB inhibits TRAF6 activation, possibly by inducing a conformational change in TIFA (PubMed:15047173). Interacts with ZCCHC11; binding to ZCCHC11 suppresses the TRAF6-dependent activation of NF-kappa-B (PubMed:16643855). UniProt
The FHA domain recognizes and binds phosphorylated Thr-9, promoting homooligomerization and subsequent activation of NF-kappa-B. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.