ATP-dependent RNA helicase DHX33 - Q9H6R0 (DHX33_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Implicated in nucleolar organization, ribosome biogenesis, protein synthesis and cytoplasmic dsRNA sensing (By similarity) (PubMed:21930779, PubMed:23871209, PubMed:26100019). Stimulates RNA polymerase I transcription of the 47S precursor rRNA. Associates with ribosomal DNA (rDNA) loci where it is involved in POLR1A recruitment (PubMed:21930779). In the cytoplasm, promotes elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation (PubMed:26100019). Senses cytosolic dsRNA mediating NLRP3 inflammasome formation in macrophages and type I interferon production in myeloid dendritic cells (PubMed:23871209). Required for NLRP3 activation induced by viral dsRNA and bacterial RNA (PubMed:23871209). In dendritic cells, required for induction of type I interferon production induced by cytoplasmic dsRNA via the activation of MAPK and NF-kappa-B signaling pathways (By similarity). UniProt
Catalytic Activity
ATP + H2O = ADP + H+ + phosphate UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Interacts with UBTF (PubMed:21930779). Interacts with DDX3X, EIF3G and EIF3H; the interaction is independent of RNA (PubMed:26100019). Interacts (via HA2 region and Helicase C-terminal domain) with the components of the large ribosomal subunit RPL3, RPL7, RPL26 and RPL27 (PubMed:26100019). Interacts (via DEAH box) with NLRP3 (via NACHT domain) (PubMed:23871209). Binds to mRNA (PubMed:26100019). Binds to double-stranded RNA (via the helicase C-terminal domain) (PubMed:23871209). Interacts (via the helicase C-terminal domain) with MAVS (By similarity). UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.