1BDK

AN NMR, CD, MOLECULAR DYNAMICS, AND FLUOROMETRIC STUDY OF THE CONFORMATION OF THE BRADYKININ ANTAGONIST B-9340 IN WATER AND IN AQUEOUS MICELLAR SOLUTIONS


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

An NMR, CD, molecular dynamics, and fluorometric study of the conformation of the bradykinin antagonist B-9340 in water and in aqueous micellar solutions.

Sejbal, J.Cann, J.R.Stewart, J.M.Gera, L.Kotovych, G.

(1996) J Med Chem 39: 1281-1292

  • DOI: https://doi.org/10.1021/jm950485f
  • Primary Citation of Related Structures:  
    1BDK

  • PubMed Abstract: 

    A detailed NMR, CD, fluorometry, and molecular modeling study of a novel bradykinin antagonist B-9340, containing a novel amino acid D-Igl (alpha-(2-indanyl)glycine) at position 7, was carried out. The sequence of B-9340 is D-Arg0-Arg1-Pro2-Hyp3-Gly4-Thi5-Ser6-D- Igl7-Oic8-Arg9, where Hyp is hydroxyproline, Thi is beta-(2-thienyl)alanine, and Oic is (3aS,7aS)-octahydroindole-2-carboxylic acid. The CD results exhibit a striking effect of SDS on the spectrum of the BK antagonist, indicating that interaction with the surfactant induces a folded peptide structure. The interaction of this antagonist with phosphatidylinositol was monitored by fluorometry, indicating that the interaction of the peptide with the lipid is cooperative, and gives a Hill coefficient of 2.3. The two-dimensional proton NMR measurements indicate that B-9340 has no stable secondary structure in water solution and contains about 10-15% cis peptide bonds arising from Pro2, Hyp3, and Oic8. In SDS micelles, NMR reveals the existence of two beta-turns based on a number of medium-range connectivities that were useful for molecular modeling. The actual molecular modeling and dynamic runs were performed on B-9340 in an environment consisting of a layer of octyl sulfate anions and water. Ther results indicate that the structure of B-9340 in a micellar environment is characterized by a nonideal betaII-turn comprising residues Pro2 to Thi5, a nonideal betaII'-turn comprising residues Ser6-Arg9, and broad folding in the middle part of the molecule. The structure is stabilized by several hydrogen bonds and by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9, whereas the middle part of the peptide is buried in the micelle. The structure is deposited as Brookhaven PDB file 1 BDK.


  • Organizational Affiliation

    Department of Chemistry, University of Alberta, Edmonton, Canada.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
bradykinin antagonist B-934010N/AMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  3 Unique
IDChains TypeFormula2D DiagramParent
HYP
Query on HYP
A
L-PEPTIDE LINKINGC5 H9 N O3PRO
IGL
Query on IGL
A
L-PEPTIDE LINKINGC11 H13 N O2GLY
TIH
Query on TIH
A
L-PEPTIDE LINKINGC7 H9 N O2 SALA
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1995-12-07
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Atomic model, Database references, Derived calculations, Non-polymer description, Structure summary, Version format compliance