1DS8

PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES IN THE CHARGE-NEUTRAL DQAQB STATE WITH THE PROTON TRANSFER INHIBITOR CD2+


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.227 
  • R-Value Observed: 0.229 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers.

Axelrod, H.L.Abresch, E.C.Paddock, M.L.Okamura, M.Y.Feher, G.

(2000) Proc Natl Acad Sci U S A 97: 1542-1547

  • DOI: https://doi.org/10.1073/pnas.97.4.1542
  • Primary Citation of Related Structures:  
    1DS8, 1DV3, 1DV6

  • PubMed Abstract: 

    The reaction center (RC) from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, Q(B), within the RC. The binding of Cd(2+) or Zn(2+) has been previously shown to inhibit the rate of reduction and protonation of Q(B). We report here on the metal binding site, determined by x-ray diffraction at 2.5-A resolution, obtained from RC crystals that were soaked in the presence of the metal. The structures were refined to R factors of 23% and 24% for the Cd(2+) and Zn(2+) complexes, respectively. Both metals bind to the same location, coordinating to Asp-H124, His-H126, and His-H128. The rate of electron transfer from Q(A)(-) to Q(B) was measured in the Cd(2+)-soaked crystal and found to be the same as in solution in the presence of Cd(2+). In addition to the changes in the kinetics, a structural effect of Cd(2+) on Glu-H173 was observed. This residue was well resolved in the x-ray structure-i.e., ordered-with Cd(2+) bound to the RC, in contrast to its disordered state in the absence of Cd(2+), which suggests that the mobility of Glu-H173 plays an important role in the rate of reduction of Q(B). The position of the Cd(2+) and Zn(2+) localizes the proton entry into the RC near Asp-H124, His-H126, and His-H128. Based on the location of the metal, likely pathways of proton transfer from the aqueous surface to Q(B) are proposed.


  • Organizational Affiliation

    Department of Physics 0319, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
REACTION CENTER PROTEIN L CHAINA [auth L],
D [auth R]
281Cereibacter sphaeroidesMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P0C0Y8 (Cereibacter sphaeroides)
Explore P0C0Y8 
Go to UniProtKB:  P0C0Y8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C0Y8
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
REACTION CENTER PROTEIN M CHAINB [auth M],
E [auth S]
307Cereibacter sphaeroidesMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P0C0Y9 (Cereibacter sphaeroides)
Explore P0C0Y9 
Go to UniProtKB:  P0C0Y9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C0Y9
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
REACTION CENTER PROTEIN H CHAINC [auth H],
F [auth T]
260Cereibacter sphaeroidesMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P0C0Y7 (Cereibacter sphaeroides)
Explore P0C0Y7 
Go to UniProtKB:  P0C0Y7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C0Y7
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 7 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
BCL
Query on BCL

Download Ideal Coordinates CCD File 
BA [auth S]
G [auth L]
H [auth L]
I [auth L]
N [auth M]
BA [auth S],
G [auth L],
H [auth L],
I [auth L],
N [auth M],
U [auth R],
V [auth R],
W [auth R]
BACTERIOCHLOROPHYLL A
C55 H74 Mg N4 O6
DSJXIQQMORJERS-AGGZHOMASA-M
BPH
Query on BPH

Download Ideal Coordinates CCD File 
CA [auth S],
J [auth L],
O [auth M],
X [auth R]
BACTERIOPHEOPHYTIN A
C55 H76 N4 O6
KWOZSBGNAHVCKG-SZQBJALDSA-N
U10
Query on U10

Download Ideal Coordinates CCD File 
DA [auth S],
K [auth L],
P [auth M],
Y [auth R]
UBIQUINONE-10
C59 H90 O4
ACTIUHUUMQJHFO-UPTCCGCDSA-N
LDA
Query on LDA

Download Ideal Coordinates CCD File 
EA [auth S]
FA [auth S]
GA [auth S]
Q [auth M]
R [auth M]
EA [auth S],
FA [auth S],
GA [auth S],
Q [auth M],
R [auth M],
S [auth M]
LAURYL DIMETHYLAMINE-N-OXIDE
C14 H31 N O
SYELZBGXAIXKHU-UHFFFAOYSA-N
CD
Query on CD

Download Ideal Coordinates CCD File 
HA [auth T],
T [auth H]
CADMIUM ION
Cd
WLZRMCYVCSSEQC-UHFFFAOYSA-N
FE2
Query on FE2

Download Ideal Coordinates CCD File 
L [auth M],
Z [auth S]
FE (II) ION
Fe
CWYNVVGOOAEACU-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
AA [auth S],
M
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.227 
  • R-Value Observed: 0.229 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 139.59α = 90
b = 139.59β = 90
c = 272.86γ = 90
Software Package:
Software NamePurpose
CNSrefinement
MOSFLMdata reduction
CCP4data scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-03-08
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2011-11-16
    Changes: Atomic model
  • Version 1.4: 2024-02-07
    Changes: Data collection, Database references, Derived calculations