3QLM

Crystal structure of porcine pancreatic phospholipase A2 in complex with n-hexadecanoic acid


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.194 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and Kinetic assessment.

Aparna, V.Dileep, K.V.Mandal, P.K.Karthe, P.Sadasivan, C.Haridas, M.

(2012) Chem Biol Drug Des 

  • DOI: https://doi.org/10.1111/j.1747-0285.2012.01418.x
  • Primary Citation of Related Structures:  
    3QLM

  • PubMed Abstract: 

    Ester bond hydrolysis of membrane phospholipids by Phospholipase A(2) and consequent release of fatty acids are the initiating steps of inflammation. It is proposed in this study that the inhibition of phospholipase A(2) is one of the ways to control inflammation. Investigations are carried out to identify the mode of inhibition of phospholipase A(2) by the n-hexadecanoic acid. It may help in designing of specific inhibitors of phospholipase A(2) as anti-inflammatory agents. The enzyme kinetics study proved that n-hexadecanoic acid inhibits phospholipase A(2) in a competitive manner. It was identified from the crystal structure at 2.5 Å resolution that the position of n-hexadecanoic acid is in the active site of the phospholipase A(2). The binding constant and binding energy have also been calculated using Isothermal Titration Calorimetry. Also, the binding energy of n-hexadecanoic acid to phospholipase A(2) was calculated by in silico method and compared with known inhibitors. It may be concluded from the structural and kinetics studies that the fatty acid, n-hexadecanoic acid, is an inhibitor of phospholipase A(2), hence, an anti-inflammatory compound. The inferences from the present study validate the rigorous use of medicated oils rich in n-hexadecanoic acid for the treatment of rheumatic symptoms in the traditional medical system of India, Ayurveda.


  • Organizational Affiliation

    Department of Biotechnology & Microbiology, Kannur University, Thalassery Campus, Palayad, India.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Phospholipase A2, major isoenzyme124Sus scrofaMutation(s): 0 
EC: 3.1.1.4
UniProt
Find proteins for P00592 (Sus scrofa)
Explore P00592 
Go to UniProtKB:  P00592
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00592
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
PLM Binding MOAD:  3QLM Ki: 1.58e+4 (nM) from 1 assay(s)
PDBBind:  3QLM Kd: 431 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.194 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 69.26α = 90
b = 69.26β = 90
c = 69.66γ = 120
Software Package:
Software NamePurpose
MAR345dtbdata collection
PHASERphasing
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-04-06
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2012-06-20
    Changes: Database references
  • Version 1.3: 2017-11-08
    Changes: Refinement description
  • Version 1.4: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description