4GMT

Crystal structure of heterosubtypic Fab S139/1


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.158 
  • R-Value Observed: 0.160 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 3.1 of the entry. See complete history


Literature

Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity.

Lee, P.S.Yoshida, R.Ekiert, D.C.Sakai, N.Suzuki, Y.Takada, A.Wilson, I.A.

(2012) Proc Natl Acad Sci U S A 109: 17040-17045

  • DOI: https://doi.org/10.1073/pnas.1212371109
  • Primary Citation of Related Structures:  
    4GMT

  • PubMed Abstract: 

    Continual and rapid mutation of seasonal influenza viruses by antigenic drift necessitates the almost annual reformulation of flu vaccines, which may offer little protection if the match to the dominant circulating strain is poor. S139/1 is a cross-reactive antibody that neutralizes multiple HA strains and subtypes, including those from H1N1 and H3N2 viruses that currently infect humans. The crystal structure of the S139/1 Fab in complex with the HA from the A/Victoria/3/1975 (H3N2) virus reveals that the antibody targets highly conserved residues in the receptor binding site and contacts antigenic sites A, B, and D. Binding and plaque reduction assays show that the monovalent Fab alone can protect against H3 strains, but the enhanced avidity from binding of bivalent IgG increases the breadth of neutralization to additional strains from the H1, H2, H13, and H16 subtypes. Thus, antibodies making relatively low affinity Fab interactions with the receptor binding site can have significant antiviral activity when enhanced by avidity through bivalent interactions of the IgG, thereby extending the breadth of binding and neutralization to highly divergent influenza virus strains and subtypes.


  • Organizational Affiliation

    Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fab S139/1 light chainA [auth L],
C [auth M]
214Mus musculusMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Fab S139/1 heavy chainB [auth H],
D [auth I]
225Mus musculusMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 3
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoseE [auth A]2N-Glycosylation
Glycosylation Resources
GlyTouCan:  G42666HT
GlyCosmos:  G42666HT
GlyGen:  G42666HT
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
PCA
Query on PCA
B [auth H],
D [auth I]
L-PEPTIDE LINKINGC5 H7 N O3GLN
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.05 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.158 
  • R-Value Observed: 0.160 
  • Space Group: P 32 1 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 106.84α = 90
b = 106.84β = 90
c = 185.52γ = 120
Software Package:
Software NamePurpose
Blu-Icedata collection
PHASERphasing
PHENIXrefinement
XDSdata reduction
XDSdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-10-03
    Type: Initial release
  • Version 1.1: 2012-10-17
    Changes: Database references
  • Version 1.2: 2012-10-31
    Changes: Database references
  • Version 2.0: 2019-12-25
    Changes: Derived calculations, Polymer sequence
  • Version 3.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary
  • Version 3.1: 2023-09-13
    Changes: Data collection, Database references, Refinement description, Structure summary