H/ACA ribonucleoprotein complex subunit DKC1 - O60832 (DKC1_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). UniProt
Catalytic Activity
uridine in 5S rRNA = pseudouridine in 5S rRNA UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Part of the H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which contains NHP2/NOLA2, GAR1/NOLA1, NOP10/NOLA3, and DKC1/NOLA4, which is presumed to be the catalytic subunit (PubMed:15044956). The complex contains a stable core formed by binding of one or two NOP10-DKC1 heterodimers to NHP2; GAR1 subsequently binds to this core via DKC1 (PubMed:15044956). The complex binds a box H/ACA small nucleolar RNA (snoRNA), which may target the specific site of modification within the RNA substrate (PubMed:15044956). During assembly, the complex contains NAF1 instead of GAR1/NOLA1 (PubMed:16601202, PubMed:16618814). The complex also interacts with TERC, which contains a 3'-terminal domain related to the box H/ACA snoRNAs. Specific interactions with snoRNAs or TERC are mediated by GAR1 and NHP2. Associates with NOLC1/NOPP140 (PubMed:15044956). H/ACA snoRNPs interact with the SMN complex, consisting of SMN1 or SMN2, GEMIN2/SIP1, DDX20/GEMIN3, and GEMIN4. This is mediated by interaction between GAR1 and SMN1 or SMN2. The SMN complex may be required for correct assembly of the H/ACA snoRNP complex (PubMed:15044956). Component of the telomerase holoenzyme complex composed of one molecule of TERT, one molecule of WRAP53/TCAB1, two molecules of H/ACA ribonucleoprotein complex subunits DKC1, NOP10, NHP2 and GAR1, and a telomerase RNA template component (TERC) (PubMed:11074001, PubMed:19179534, PubMed:20351177, PubMed:29695869). The telomerase holoenzyme complex is associated with TEP1, SMG6/EST1A and POT1 (PubMed:19179534). Interacts with SHQ1; this interaction may lead to the stabilization of DKC1, from the time of its synthesis until its association with NOP10, NHP2, and NAF1 at the nascent H/ACA RNA (PubMed:19734544, PubMed:19383767). Interacts with HMBOX1 (PubMed:23685356). Interacts with DHX36 (PubMed:21846770). UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.