Protein PML - Q60953 (PML_MOUSE)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Regulates phosphorylation of ITPR3 and plays a role in the regulation of calcium homeostasis at the endoplasmic reticulum. Regulates RB1 phosphorylation and activity. Acts as both a negative regulator of PPARGC1A acetylation and a potent activator of PPAR signaling and fatty acid oxidation. Regulates translation of HIF1A by sequestering MTOR, and thereby plays a role in neoangiogenesis and tumor vascularization. Regulates PER2 nuclear localization and circadian function. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. Required for normal development of the brain cortex during embryogenesis. Plays a role in granulopoiesis or monopoiesis of myeloid progenitor cells. May play a role regulating stem and progenitor cell fate in tissues as diverse as blood, brain and breast. Shows antiviral activity towards lymphocytic choriomeningitis virus (LCMV) and the vesicular stomatitis virus (VSV). UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Key component of PML bodies. PML bodies are formed by the interaction of PML homodimers (via SUMO-binding motif) with sumoylated PML, leading to the assembly of higher oligomers. Several types of PML bodies have been observed. PML bodies can form hollow spheres that can sequester target proteins inside. Interacts (via SUMO-binding motif) with sumoylated proteins. Interacts (via C-terminus) with p53/TP53. Recruits p53/TP53 and CHEK2 into PML bodies, which promotes p53/TP53 phosphorylation at 'Ser-20' and prevents its proteasomal degradation. Interacts with MDM2, and sequesters MDM2 in the nucleolus, thereby preventing ubiquitination of p53/TP53. Interaction with PML-RARA oncoprotein and certain viral proteins causes disassembly of PML bodies and abolishes the normal PML function. Interacts with TERT, SIRT1, TOPBP1, TRIM27 and TRIM69. Interacts with ELF4 (via C-terminus). Interacts with Lassa virus Z protein and rabies virus phosphoprotein. Interacts (in the cytoplasm) with TGFBR1, TGFBR2 and PKM. Interacts (via the coiled-coil domain and when sumoylated) with SATB1. Interacts with UBE2I; the interaction is enhanced by arsenic binding. Interacts with SMAD2, SMAD3, DAXX, RPL11, HIPK2 and MTOR. Interacts with ITPR3, PPP1A and RB1. Interacts with RNF4, NLRP3, MAGEA2, RBL2, PER2, E2F4 and MAPK7/BMK1. Interacts with CSNK2A1 and CSNK2A3. Interacts with ANKRD2; the interaction is direct. Interacts with PPARGC1A AND KAT2A. Interacts (via SUMO-interacting motif) with sumoylated MORC3 (By similarity). Interacts with TRIM16. UniProt
The Sumo interaction motif (SIM) is required for efficient ubiquitination, recruitment of proteasome components within PML-NBs and PML degradation in response to arsenic trioxide. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.