E3 SUMO-protein ligase ZNF451 - Q9Y4E5 (ZN451_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

E3 SUMO-protein ligase; has a preference for SUMO2 and SUMO3 and facilitates UBE2I/UBC9-mediated sumoylation of target proteins (PubMed:26524493, PubMed:26524494). Plays a role in protein SUMO2 modification in response to stress caused by DNA damage and by proteasome inhibitors (in vitro). Required for MCM4 sumoylation (By similarity). Has no activity with SUMO1 (PubMed:26524493). Preferentially transfers an additional SUMO2 chain onto the SUMO2 consensus site 'Lys-11' (PubMed:26524493). Negatively regulates transcriptional activation mediated by the SMAD4 complex in response to TGF-beta signaling. Inhibits EP300-mediated acetylation of histone H3 at 'Lys-9' (PubMed:24324267). Plays a role in regulating the transcription of AR targets (PubMed:18656483). UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Homooligomer. Interacts (via N-terminal region) with SUMO1 (PubMed:18656483). Interacts (via N-terminal region) with SUMO2 (PubMed:18656483, PubMed:26524494). Interacts simultaneously with two SUMO2 chains (PubMed:26524493, PubMed:26524494). Identified in a complex with SUMO2 and UBE2I/UBC9, where one ZNF451 interacts with one UBE2I/UBC9 and two SUMO2 chains, one bound to the UBE2I/UBC9 active site and the other to another region of the same UBE2I/UBC9 molecule (PubMed:26524493, PubMed:26524494). Interacts (via C-terminus) with ubiquitin (PubMed:18656483). Interacts (via N-terminal zinc-finger domains) with SMAD4 (via MH2 domain). Interacts with SMAD2 and SMAD3. Identified in a complex that contains at least ZNF451, SMAD2, SMAD3 and SMAD4. Interacts with EP300. Inhibits interaction between EP300 and the SMAD4 complex (PubMed:24324267). UniProt
Binds UBE2I/UBC9 and two SUMO2 molecules via its N-terminus. The most N-terminal region interacts with the SUMO2 chain that is covalently bound to the UBE2I/UBC9 active site, while the second region interacts with another SUMO2 that is non-covalently associated with the same UBE2I/UBC9 chain. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.