Nicastrin and presenilin are two major components of the gamma-secretase complex, which executes the intramembrane proteolysis of type I integral membrane proteins such as the amyloid precursor protein (APP) and Notch. Nicastrin is synthesised in fi ...
Nicastrin and presenilin are two major components of the gamma-secretase complex, which executes the intramembrane proteolysis of type I integral membrane proteins such as the amyloid precursor protein (APP) and Notch. Nicastrin is synthesised in fibroblasts and neurons as an endoglycosidase-H-sensitive glycosylated precursor protein (immature nicastrin) and is then modified by complex glycosylation in the Golgi apparatus and by sialylation in the trans-Golgi network (mature nicastrin) [1]. A region featured in this family has a fold similar to human transferrin receptor (TfR, Swiss:P02786) and a bacterial aminopeptidase (Swiss:P80561). It is implicated in the pathogenesis of Alzheimer's disease [4].
This domain is part of the protein Nicastrin, a component of gamma secretase present in Homo sapiens. Gamma-secretase is thought to contribute to Alzheimer's disease development by generating beta-amyloid peptides. This domain is the known as the sma ...
This domain is part of the protein Nicastrin, a component of gamma secretase present in Homo sapiens. Gamma-secretase is thought to contribute to Alzheimer's disease development by generating beta-amyloid peptides. This domain is the known as the small lobe which forms the 'lid'. The lid is an extended surface loop that covers the hydrophilic pocket that is thought to be responsible for substrate recruitment. On substrate binding, the large lobe is thought to rotate relative to the small lobe [1].