2B0K

Crystal structure of the DB921-D(CGCGAATTCGCG)2 complex.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.64 Å
  • R-Value Free: 0.300 
  • R-Value Observed: 0.229 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Out-of-Shape DNA Minor Groove Binders: Induced Fit Interactions of Heterocyclic Dications with the DNA Minor Groove.

Miao, Y.Lee, M.P.Parkinson, G.N.Batista-Parra, A.Ismail, M.A.Neidle, S.Boykin, D.W.Wilson, W.D.

(2005) Biochemistry 44: 14701-14708

  • DOI: https://doi.org/10.1021/bi051791q
  • Primary Citation of Related Structures:  
    2B0K

  • PubMed Abstract: 

    DB921 and DB911 are benzimidazole-biphenyl isomers with terminal charged amidines. DB911 has a central meta-substituted phenyl that gives it a shape similar to those of known minor groove binding compounds. DB921 has a central para-substituted phenyl with a linear conformation that lacks the appropriate radius of curvature to match the groove shape. It is thus expected that DB911, but not DB921, should be an effective minor groove binder, but we find that DB921 not only binds in the groove but also has an unusually high binding constant in SPR experiments (2.9 x 10(8) M(-)(1), vs 2.1 x 10(7) M(-)(1) for DB911). ITC thermodynamic analysis with an AATT sequence shows that the stronger binding of DB921 is due to a more favorable binding enthalpy relative to that of DB911. CD results support minor groove binding for both compounds but do not provide an explanation for the binding of DB921. X-ray crystallographic analysis of DB921 bound to AATT shows that an induced fit structural change in DB921 reduces the twist of the biphenyl to complement the groove, and places the functional groups in position to interact with bases at the floor of the groove. The phenylamidine of DB921 forms indirect contacts with the bases through a bound water. The DB921-water pair forms a curved binding module that matches the shape of the minor groove and provides a number of strong interactions that are not possible with DB911. This result suggests that traditional views of compound curvature required for minor groove complex formation should be reevaluated.


  • Organizational Affiliation

    Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3'
A, B
12N/A
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
D2A
Query on D2A

Download Ideal Coordinates CCD File 
D [auth A]2-(4'-AMIDINOBIPHENYL-4-YL)-1H-BENZIMIDAZOLE-5-AMIDINE
C21 H18 N6
MIMVUHYHAXPADM-UHFFFAOYSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
C [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.64 Å
  • R-Value Free: 0.300 
  • R-Value Observed: 0.229 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 24.288α = 90
b = 40.068β = 90
c = 65.989γ = 90
Software Package:
Software NamePurpose
SHELXL-97refinement
SCALEPACKdata scaling
CNSrefinement
DENZOdata reduction
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-11-22
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2019-07-24
    Changes: Data collection, Refinement description
  • Version 1.4: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description