6T1R

Pseudo-atomic model of a 16-mer assembly of reduced recombinant human alphaA-crystallin (non domain swapped configuration)


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 9.8 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

The structure and oxidation of the eye lens chaperone alpha A-crystallin.

Kaiser, C.J.O.Peters, C.Schmid, P.W.N.Stavropoulou, M.Zou, J.Dahiya, V.Mymrikov, E.V.Rockel, B.Asami, S.Haslbeck, M.Rappsilber, J.Reif, B.Zacharias, M.Buchner, J.Weinkauf, S.

(2019) Nat.Struct.Mol.Biol. 26: 1141-1150

  • DOI: 10.1038/s41594-019-0332-9

  • PubMed Abstract: 
  • The small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combini ...

    The small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combining cryo-electron microscopy, cross-linking/mass spectrometry, NMR spectroscopy and molecular modeling. The different oligomers can be interconverted by the addition or subtraction of tetramers, leading to mainly 12-, 16- and 20-meric assemblies in which interactions between N-terminal regions are important. Cross-dimer domain-swapping of the C-terminal region is a determinant of αA-crystallin heterogeneity. Human αA-crystallin contains two cysteines, which can form an intramolecular disulfide in vivo. Oxidation in vitro requires conformational changes and oligomer dissociation. The oxidized oligomers, which are larger than reduced αA-crystallin and destabilized against unfolding, are active chaperones and can transfer the disulfide to destabilized substrate proteins. The insight into the structure and function of αA-crystallin provides a basis for understanding its role in the eye lens.


    Organizational Affiliation

    Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Institute for Biochemistry and Molecular Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany.,Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany. sevil.weinkauf@tum.de.,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.,Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany. johannes.buchner@tum.de.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at the Physics Department, Technische Universität München, Garching, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Alpha-crystallin A chain
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P
173Homo sapiensMutation(s): 0 
Gene Names: CRYAA (CRYA1, HSPB4)
Find proteins for P02489 (Homo sapiens)
Go to Gene View: CRYAA
Go to UniProtKB:  P02489
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 9.8 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
German Research FoundationGermanyCRC 1035
German Research FoundationGermanyEXC 114

Revision History 

  • Version 1.0: 2019-12-11
    Type: Initial release
  • Version 1.1: 2019-12-18
    Type: Database references