Solution x-ray scattering highlights discrepancies in Plasmodium multi-aminoacyl-tRNA synthetase complexes.
Jaramillo Ponce, J.R., Theobald-Dietrich, A., Benas, P., Paulus, C., Sauter, C., Frugier, M.(2023) Protein Sci : e4564-e4564
- PubMed: 36606712 Search on PubMed
- DOI: 10.1002/pro.4564
- Primary Citation of Related Structures:  
8BCQ, 8BHD - PubMed Abstract: 
- Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein.
Jaramillo Ponce, J.R., Kapps, D., Paulus, C., Chicher, J., Frugier, M.
(2022) J Biol Chem 298: 101987 - Towards automated crystallographic structure refinement with phenix.refine.
Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., Adams, P.D.
(2012) Acta Crystallogr D Biol Crystallogr 68: 352 - Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.
Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., Jain, S., McCoy, A.J., Moriarty, N.W., Oeffner, R.D., Poon, B.K., Prisant, M.G., Read, R.J., Richardson, J.S., Richardson, D.C., Sammito, M.D., Sobolev, O.V., Stockwell, D.H., Terwilliger, T.C., Urzhumtsev, A.G., Videau, L.L., Williams, C.J., Adams, P.D.
(2019) Acta Crystallogr D Struct Biol 75: 861 - Coot: model-building tools for molecular graphics.
Emsley, P., Cowtan, K.
(2004) Acta Crystallogr D Biol Crystallogr 60: 2126 - The Buccaneer software for automated model building. 1. Tracing protein chains.
Cowtan, K.
(2006) Acta Crystallogr D Biol Crystallogr 62: 1002 - Recent developments in classical density modification.
Cowtan, K.
(2010) Acta Crystallogr D Biol Crystallogr 66: 470 - Multivariate phase combination improves automated crystallographic model building.
Skubak, P., Waterreus, W.J., Pannu, N.S.
(2010) Acta Crystallogr D Biol Crystallogr 66: 783 - Methods used in the structure determination of bovine mitochondrial F1 ATPase.
Abrahams, J.P., Leslie, A.G.
(1996) Acta Crystallogr D Biol Crystallogr 52: 30 - REFMAC5 for the refinement of macromolecular crystal structures.
Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., Vagin, A.A.
(2011) Acta Crystallogr D Biol Crystallogr 67: 355 - Substructure solution with SHELXD.
Schneider, T.R., Sheldrick, G.M.
(2002) Acta Crystallogr D Biol Crystallogr 58: 1772 - A short history of SHELX.
Sheldrick, G.M.
(2008) Acta Crystallogr A 64: 112 - Automatic protein structure solution from weak X-ray data.
Skubak, P., Pannu, N.S.
(2013) Nat Commun 4: 2777 - XDS.
Kabsch, W.
(2010) Acta Crystallogr D Biol Crystallogr 66: 125 - Integration, scaling, space-group assignment and post-refinement.
Kabsch, W.
(2010) Acta Crystallogr D Biol Crystallogr 66: 133 - MXCuBE2: the dawn of MXCuBE Collaboration.
Oscarsson, M., Beteva, A., Flot, D., Gordon, E., Guijarro, M., Leonard, G., McSweeney, S., Monaco, S., Mueller-Dieckmann, C., Nanao, M., Nurizzo, D., Popov, A.N., von Stetten, D., Svensson, O., Rey-Bakaikoa, V., Chado, I., Chavas, L.M.G., Gadea, L., Gourhant, P., Isabet, T., Legrand, P., Savko, M., Sirigu, S., Shepard, W., Thompson, A., Mueller, U., Nan, J., Eguiraun, M., Bolmsten, F., Nardella, A., Milan-Otero, A., Thunnissen, M., Hellmig, M., Kastner, A., Schmuckermaier, L., Gerlach, M., Feiler, C., Weiss, M.S., Bowler, M.W., Gobbo, A., Papp, G., Sinoir, J., McCarthy, A.A., Karpics, I., Nikolova, M., Bourenkov, G., Schneider, T., Andreu, J., Cuni, G., Juanhuix, J., Boer, R., Fogh, R., Keller, P., Flensburg, C., Paciorek, W., Vonrhein, C., Bricogne, G., de Sanctis, D.
(2019) J Synchrotron Radiat 26: 393 - Status of the crystallography beamlines at synchrotron SOLEIL⋆
Coati, A., Chavas, L.M.G., Fontaine, P., Foos, N., Guimaraes, B., Gourhant, P., Legrand, P., Itie, J.P., Fertey, P., Shepard, W., Isabet, T., Sirigu, S., Solari, P.L., Thiaudiere, D., Thompson, A.
(2017) Eur Phys J Plus 132: 174 - Crystallophore: a versatile lanthanide complex for protein crystallography combining nucleating effects, phasing properties, and luminescence.
Engilberge, S., Riobe, F., Di Pietro, S., Lassalle, L., Coquelle, N., Arnaud, C.A., Pitrat, D., Mulatier, J.C., Madern, D., Breyton, C., Maury, O., Girard, E.
(2017) Chem Sci 8: 5909
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl-tRNA synthetases (aaRS), the glutamyl- (ERS), glutaminyl- (QRS), and methionyl- (MRS) tRNA synthetases ...
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl-tRNA synthetases (aaRS), the glutamyl- (ERS), glutaminyl- (QRS), and methionyl- (MRS) tRNA synthetases. In eukaryotes, such multi-aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N-terminal GST-like domain involved in the assembly of two independent complexes: the Q-complex (tRip:ERS:QRS) and the M-complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST-like domains of tRip and ERS (tRip-N:ERS-N) is central. In this study, the crystal structure of the N-terminal GST-like domain of ERS was solved and made possible further investigation of the solution architecture of the Q- and M-complexes by small-angle X-ray scattering (SAXS). This strategy relied on the engineering of a tRip-N-ERS-N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed. This article is protected by copyright. All rights reserved.
Related Citations: 
Organizational Affiliation: 
Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.