3BQ6

Crystal Structure of T. maritima Cobalamin-Independent Methionine Synthase complexed with Zn2+ (Monoclinic)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.210 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Metal active site elasticity linked to activation of homocysteine in methionine synthases.

Koutmos, M.Pejchal, R.Bomer, T.M.Matthews, R.G.Smith, J.L.Ludwig, M.L.

(2008) Proc.Natl.Acad.Sci.Usa 105: 3286-3291

  • DOI: 10.1073/pnas.0709960105
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Althou ...

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.


    Organizational Affiliation

    Biophysics Research Division, Life Sciences Institute, and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. mkoutmos@umich.edu




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase
A, B
766Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)Mutation(s): 0 
Gene Names: metE
EC: 2.1.1.14
Find proteins for Q9X112 (Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099))
Go to UniProtKB:  Q9X112
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A, B
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.1 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.210 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 72.087α = 90.00
b = 107.604β = 110.12
c = 107.442γ = 90.00
Software Package:
Software NamePurpose
EPMRphasing
XSCALEdata scaling
XDSdata reduction
PHENIXrefinement
Blu-Icedata collection

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2008-03-11
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance